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Abstract. Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty 

in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 

emission pathways through ebullition, plant-mediated transport, and diffusion together with their different transport 

rates and vulnerability to oxidation determine the quantity of CH4 to be oxidized before leaving the soil.  30 

Notwithstanding their importance, the relative contributions of the emission pathways have not been well 

characterized by experiments or modeling approaches. In particular, the ebullition process is more uncertain and can 

lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its 

pathways, we evaluated two model structures: 1) the Ebullition Bubble Growth volume threshold approach (EBG) 

and 2) the modified Ebullition Concentration Threshold approach (ECT) using CH4 flux and concentration data 35 

collected in a peatland in northern Minnesota, USA. When model parameters were constrained using observed CH4 

fluxes, the CH4 emissions simulated by the EBG approach (RMSE = 0.53) had a better agreement with observations 

than the ECT approach (RMSE = 0.61). Further, the EBG approach simulated a smaller contribution from ebullition 

but more frequent ebullition events than the ECT approach. The EBG approach yielded greatly improved 

simulations of pore water CH4 concentrations, especially in the deep soil layers, compared to the ECT approach. 40 

When constraining the EBG model with both CH4 flux and concentration data in model-data fusion, uncertainty of 

the modeled CH4 concentration profiles was reduced by 78 to 86 % in comparison to constraints based on CH4 flux 

data alone. The improved model capability was attributed to the well-constrained parameters regulating the CH4 

production and emission pathways. Our results suggest that the EBG modeling approach better characterizes CH4 

emission and underlying mechanisms. Moreover, to achieve the best model results both CH4 flux and concentration 45 

data are required to constrain model parameterization. 
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1 Introduction 

Methane (CH4) emissions from wetlands constitute roughly one third of the global CH4 budget (Denman et al., 2007; 

Saunois et al., 2020). Methane, following production under anoxic conditions, is stored belowground, oxidized into 50 

CO2 by methanotrophs, or emitted into the atmosphere as CH4. The emission of CH4 is a major concern given its 

sustained-flux global warming potential (SGWP) of 45 (Neubauer and Megonigal, 2015). Methane emissions from 

wetlands cannot be simply estimated from production rates, as more than 50 % of methane can be oxidized during 

transport to the atmosphere in various ecosystems (Conrad and Rothfuss, 1991; Teh et al., 2005; Segarra et al., 

2015). The global wetland CH4 oxidation sink has been estimated to be 40–70 % of CH4 production and it can 55 

dominate wetland CH4 cycling (Megonigal et al., 2004). The oxidation sink depends substantially on the CH4 

emission pathways due to their different oxidation rates (Blodau, 2002).  

        Methane is produced at depth in the soil and then transported to the atmosphere via three primary pathways: 

ebullition, plant-mediated transport, and diffusion. Ebullition is the least vulnerable to oxidation, as it allows CH4 to 

quickly ascend in a bubble that bypasses the aerobic and anaerobic zones (Epstein and Plesset, 1950). Gases such as 60 

CH4 can be released into the atmosphere by vascular plants (particularly sedges) after being transported through 

intercellular spaces (molecular diffusion) or aerenchymous tissues. Although plant-transported CH4 bypasses 

aerobic zones of the soil, 20–90 % of plant-transported CH4 can be oxidized in the rhizosphere or within the 

aerenchymous tissues where gaseous oxygen is present (Schipper and Reddy, 1996; Ström et al., 2005; Laanbroek 

2010). Diffusive transport through the peat column is the slowest transport method and therefore, CH4 is most 65 

susceptible to oxidation as it spends the longest time transiting the aerobic and anaerobic zones (Chanton and Dacey, 

1991; Megonigal et al., 2004). The relative importance of each pathway determines how much CH4 is oxidized 

before it leaves the soil. Uncertainties in the relative contributions of these pathways to CH4 emission can lead to 

large errors in the predictions of total CH4 emissions (Bridgham et al., 2013). Despite their importance, the relative 

contributions of the CH4 emission pathways have not been well quantified by either experimental or modeling 70 

approaches until recently (Ricciuto et al., 2021; Yuan et al., 2021).  

        Experimental data on the relative importance of CH4 emission pathways are limited due to spatiotemporal 

heterogeneity and the difficulty in directly measuring the different pathways (Klapstein et al., 2014; Iwata et al., 

2018). While most state-of-the-art Land Surface Models (LSMs) incorporate CH4 emission and differentiate the 

three transport pathways, information on the relative contribution of each pathway from modeling studies is still 75 

limited, and none of such studies has estimated the uncertainty or accuracy of the relative contributions of the 

emission pathways to net CH4 emission (Bridgham et al., 2013). Comparisons between modeling approaches and 

empirical CH4 data suggest that emission pathways may not be well captured by LSMs. For example, plant-

mediated CH4 transport by vascular species measured at northern peatlands accounted for 30–98 % of the total CH4 

emission (Shannon et al., 1996; Waddington et al., 1996), whereas model-estimated proportions in the similar 80 

ecosystems were all above 65 % (Tang et al., 2010; Wania et al., 2010). Empirical estimates also suggested that 

diffusion could range from 9 % to 60 % of the total CH4 flux (Barber et al., 1988; Shea et al., 2010; Iwata et al., 

2018). In contrast, modeled contribution from diffusion were always below 40 % (Tang et al., 2010; Wania et al., 

2010; Peltola et al., 2018). More dramatically, modeling approaches estimated that ebullition constituted only 0–
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10% of net CH4 flux in natural vegetated wetlands (Tang et al., 2010; Wania et al., 2010; Peltola et al., 2018), much 85 

lower than the 10–64 % that was measured in experimental studies (Glaser et al., 2004; Tokida et al., 2007a; Tokida 

et al., 2007b). The uncertainties in simulated relative contributions of the pathways to net CH4 emission in LSMs are 

mainly due to the lack of in situ information, inadequate representation of CH4 processes, and unconstrained 

parameters used to describe emission pathways (Bridgham et al., 2013; Melton et al., 2013).  

        Since net CH4 emissions depend on transport mode, all the emission pathways must first be represented 90 

correctly in ecosystem models in order to simulate CH4 emission accurately (Blodau, 2002; Tang et al., 2010). 

Compared to diffusion and plant-mediated CH4 transport, ebullition is less certain and could be the main reason for 

the mismatch between simulated and observed CH4 concentrations in deep soil layers (Peltola et al., 2018). This is 

because diffusion is described with Fick’s Law and Henry’s Law, which have been widely used and well tested, and 

plant-mediated pathway happens only within the rooting depth, which is typically shallow in wetlands with a high 95 

water table level (Iversen et al., 2018). Ebullition makes a significant contribution to the total CH4 emissions in 

some wetlands (Christensen et al., 2003; Yu et al., 2014). However, this process has not been well incorporated into 

most state-of-the-art LSMs. Mechanistically, CH4 ebullition occurs when the buoyancy force of a bubble exceeds 

the retention force. During ascent, the bubbles exchange gas with the surrounding pore water and some of the 

bubbles become trapped, allowing CH4 to re-dissolve or be oxidized within the confining layer. In modeling studies, 100 

ebullition is commonly estimated using the Ebullition Concentration Threshold (ECT) approach. In ECT, when the 

pore water CH4 concentration is larger than a defined threshold, the excess CH4 is directly released into the 

atmosphere (Walter and Heimann, 2000; Zhuang et al., 2004; Wania et al., 2010; Riley et al., 2011; Xu et al., 2016). 

However, this approach ignores the possibility of a CH4 bubble moving into a less saturated layer where it can 

subsequently dissolve and possibly be oxidized, potentially overestimating ebullition. Other methods for modeling 105 

ebullition include the Ebullition Pressure Threshold (EPT) or the Ebullition Bubble Growth volume threshold (EBG) 

to trigger ebullition (Tang et al., 2010; Zhang et al., 2012). For the EPT method, bubbles form when the CH4 

concentration exceeds a certain threshold. The EBG method describes how temperature, pressure, and gas exchange 

alter the bubble volume and uses maximum bubble volume as a threshold to trigger ebullition events (Fechner-Levy 

and Hemond, 1996; Kellner et al., 2006; Zhang et al., 2012). Peltola et al. (2018) compared these modeling 110 

approaches and concluded that EBG should be incorporated into LSMs instead of ECT or EPT, given its most 

realistic representation of the observed temporal variability of CH4 emissions. However, the ability of the EBG 

approach to represent the relative importance of CH4 emission pathways has not been evaluated against 

observations.  

        A more realistic projection of the emission pathways requires not only an improved model structure, but also 115 

more appropriate parameter values (Wania et al., 2010; Riley et al., 2011; Shi et al., 2018). Data-model fusion 

directly informs process-based models by synthesizing multisource data streams and thus can help determine 

parameter values that lie within biophysically realistic ranges and reduce model uncertainty (Williams et al., 2009; 

Keenan et al., 2013; Shi et al., 2015a; Liang et al., 2018). Previous studies have found that sporadic measurements 

of net CH4 emissions were only useful to constrain a few model parameters and data assimilation with only CH4 120 

emission (flux-based) data did not help reduce the uncertainties in emission pathways (Bridgham et al., 2013; Ma et 
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al., 2017). In our previous study, we found that monthly CH4 emission data could only constrain CH4 production-

related parameters such as temperature sensitivity (Q10) and basal production rate of CH4 production (Ma et al., 

2017). While direct measures of CH4 emission pathways are rare, depth-specific pore water CH4 concentration 

profiles can help elucidate the relative importance of CH4 emission pathways. Indeed, measured CH4 concentration 125 

profiles are critical for constraining the responsive parameters associated with CH4 emission pathways because in 

process-based CH4 models, all the three emission pathways are calculated based on the CH4 concentration in each 

soil layer.   

        To date, few modeling studies have considered CH4 concentration data for structural improvement or parameter 

optimization (Zhuang et al., 2004; Wania et al., 2010; Riley et al., 2011; Zhu et al., 2014). In those studies that 130 

compared simulation results to observed pore water CH4 concentrations, the simulated concentration profiles did not 

agree well with observations, despite good agreements between simulated and observed CH4 emission data (Walter 

and Heimann, 2000; Tang et al., 2010). Thus, when CH4 emission pathway parameters are calibrated using only net 

CH4 flux data, models may not realistically represent CH4 production, oxidation, and emission pathways. The 

exclusion of concentration profile data results in poorly constrained model parameters due to equifinality, in which 135 

multiple combinations of parameters result in similar flux predictions. This can cause misunderstanding of the 

mechanisms of CH4 processes. It will be problematic to use these not-yet-well-calibrated parameter sets for climate 

change predictions or extrapolating CH4 fluxes from the site level to larger spatial and temporal scales as these 

intermediate processes may have different responses to perturbations in climate. 

        To address these uncertainties, we evaluated the performance of two state-of-the-art methods for modeling 140 

ebullition, EBG and ECT, against the observed net CH4 fluxes and pore water CH4 concentration profiles in a 

northern Minnesota peatland. We also compared the strength of the flux-based data and pool-based data in 

constraining the parameters using data-model fusion. We hypothesized that: (1) the EBG approach can reproduce 

the observed pore water CH4 profiles better than the ECT approach, given its more mechanical representations of 

bubble formation, gas exchange, and release; and (2) pore-water CH4 concentration data offer more information for 145 

model parameters to reduce the uncertainties in simulated CH4 emission and its pathways. 

2 Methods 

2.1 Site and measurements 

The data we used to calibrate our model were collected from the Spruce and Peatland Responses Under Climatic and 

Environmental Change Experiment (SPRUCE), which is conducted in the 8.1-ha S1 bog in northern Minnesota in 150 

the USDA Forest Service Marcell Experimental Forest (N 47° 30.476’, W 93° 27.162’) to study the responses of 

northern peatlands to climate warming and elevated atmospheric CO2 concentration (Hanson et al., 2017a). The 

mean annual temperature from 1961 to 2009 at the SPRUCE site was 3.4 °C, and the mean annual precipitation was 

780mm (Sebestyen et al., 2011). The mean peat depth is 2–3 m (Parsekian et al., 2012). The dominant plant species 

include Picea mariana, Larix laricina, a variety of ericaceous shrubs, and Sphagnum sp. moss. The graminoids 155 

Carex trisperma and Eriophorum vaginatum, as well as the forb Maianthemum trifolium, have seasonal dieback of 
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their aboveground tissues in this peatland. Whole-ecosystem warming levels of +0, +2.25, +4.5, +6.75 and +9°C are 

paired with two CO2 treatments (ambient or ~400 ppm, and 900 ppm) in open-top infrastructures (12 m × 8 m). 

Deep peat warming began in June 2014, aboveground warming began in August 2015, and elevated CO2 treatments 

began in June 2016. In this study, however, all observed data we used were only from ambient plots (no 160 

infrastructures and no warming treatment) for our research goals and we did not explore the warming effects on CH4 

processes in this study. Modeling CH4 emissions in response to warming and elevated CO2 at this experiment can be 

found in Yuan et al. (2021). A complete list of data streams used in this study is included in Table 1. 

Table 1. The SPRUCE site data used in this study   

Purpose Data name Year Period Time step References  

Environmental variables 

(input) to drive the TECO 

model 

Soil temperature at 0, 5, 10, 20, 

30, 40, 50, 100, 200 cm depth 

2011–

2016 

Whole year Hourly Hanson et al., 

2015a; 

Hanson et al., 

2015b; 

Hanson et al., 

2016b 

Air temperature at 2m 

Relative Humidity at 2m 

Wind speed at 10m 

Precipitation  

Photosynthetically Active 

Radiation (PAR) at 2 m 

Water-heat balance and 

carbon cycle data to calibrate 

the model 

Soil moisture at 0, 20 cm 2011–

2016 

Whole year Hourly  Same as above 

Water table depth 2011–

2016 

Whole year Hourly  Same as above 

Leaf, wood, root biomass 2011–

2016 

End of 

growing 

season 

Once a year Hanson et al., 

2018a;  

Hanson et al., 

2018b;  

Norby et al., 2018 

Soil C content 2012 August 13–

15  

Yearly Iversen et al., 2014 

NEE, GPP, ER fluxes 2011–

2016 

Growing 

season 

1–2 times a 

month 

Hanson et al., 

2014;  

Hanson et al., 

2016a 

Data streams used in data-

model fusion 

CH4 fluxes 2011–

2016 

Growing 

season 

1–2 times a 

month 

Hanson et al., 

2014;  

Hanson et al., 

2016a; 

Hanson et al., 

2017b 

Pore water CH4 concentration at 

25, 50, 75, 100, 150, 200 cm 

depth 

2014–

2016 

Growing 

season 

Once a month Wilson et al., 2016 

Generate vertical profile of 

heterotrophic respiration and 

used in calculating plant-

mediated CH4 transport 

Fine root biomass vertical 

distribution 

2011–

2012 

Growing 

season 

Estimated from 

minirhizotron 

images collected 

weekly 

Iversen et al., 2018 

Malhotra et al., 

2020; 

Malhotra et al., 

2020  
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        Environmental variables, including soil temperature, air temperature, relative humidity, wind speed, 165 

precipitation, and photosynthetically active radiation plots were used as model input data. Measurements of 

environmental variables in ambient plots started in 2011. Soil temperature and moisture in different layers, water 

table depth (Hanson et al., 2015a; Hanson et al., 2015b; Hanson et al., 2016b), carbon pools (leaf, wood, root, and 

peat soil, Hanson et al., 2018a; Hanson et al., 2018b; Norby et al., 2018), and community-scale fluxes, including 

gross primary production (GPP), net ecosystem exchange (NEE), ecosystem respiration (ER), and CH4 flux data 170 

(Hanson et al., 2014; Hanson et al., 2016a; Hanson et al., 2017b) were used to calibrate the modeled water-heat 

balance and carbon cycle similarly as in our earlier studies (Huang et al., 2017; Ma et al., 2017; Jiang et al., 2018).  

        CH4 fluxes and pore water CH4 concentrations were used for data assimilation. We averaged the data from all 

ambient plots measured on the same dates to represent the site-level CH4 emissions and concentration profiles and 

variations among different ambient plots were not considered in this study. In total, 45 daily CH4 emission 175 

measurements were obtained from ambient plots from 2011–2016. In situ pore water CH4 concentrations were 

measured monthly during the growing seasons in 2014–2016 (11 profiles in total) with the pore water samples 

collected from a series of piezometers permanently installed in the plots at 25, 50, 75, 100, 150, and 200 cm depths, 

respectively (Wilson et al., 2016).  Piezometers consisted of a <1 cm diameter pipe that limited diffusion. Twenty-

four hours prior to sampling, piezometers were pumped dry and allowed to recharge naturally so that the sampled 180 

water would not have been in prolonged contact with the atmosphere prior to collection. Samples shallower than the 

25 cm permanently installed piezometer were collected using a perforated stainless-steel tube that was inserted into 

the peat to the desired depth. Samples were immediately filtered in the field through 0.7 µM Whatman glass-fiber 

filters and stored in pre-evacuated, septum-sealed glass vials. Phosphoric acid (1 mL, 20 %) was added to preserve 

each sample during shipment to Florida State University for analyzing CH4 concentrations.  185 

2.2 Model description 

2.2.1 Overview of TECO_SPRUCE 

For this study, we used the process-based biogeochemistry model, TECO_SPRUCE (Terrestrial ECOsystem model 

at the SPRUCE site). The model was built with six major modules running at an hourly time step: canopy 

photosynthesis, soil water dynamics, plant growth, soil thermal dynamics, soil carbon/nitrogen (N) transfer, and soil 190 

CH4 dynamics. A detailed description of these modules can be found in Weng and Luo (2008), Shi et al. (2015b), 

Huang et al. (2017), and Ma et al. (2017). Here we give a brief description of these modules but describe in detail 

how we calculated CH4 ebullition with the EBG and ECT approaches.  

        The canopy photosynthesis module was mainly derived from a two-leaf model. It couples surface energy, 

water, and carbon fluxes. Leaf photosynthesis is estimated based on the Farquhar photosynthesis model (Farquhar et 195 

al., 1980) and the Ball and Berry stomatal conductance model (Ball et al., 1987). The soil water dynamic module has 

10 soil layers and simulates water table level and soil moisture dynamics using rainfall, snowmelt, 

evapotranspiration, and runoff. Evaporative losses of water and associated latent heat are regulated by soil moisture 

in the first layer and atmospheric demand. Transpiration is determined by stomatal conductance and soil water 
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content of the layers with roots present. When precipitation exceeds water recharge to soil water holding capacity, 200 

runoff occurs. The water table level is estimated using a simple bucket model as described by Granberg et al. (1999). 

The plant growth module calculates the allocation of photosynthesis carbon to individual plant pools (foliage, stem 

and root), plant growth, plant respiration, phenology, and carbon transfer to the litter and soil carbon pools. Leaf 

onset is regulated by growing degree days (GDD) and leaf senescence is determined by low temperature and/or dry 

soil conditions. Phenology is represented by the seasonal variations of leaf area index (LAI) with LAI < 0.1 205 

indicating the end of the growing season. The soil thermal dynamics module simulates snow cover, freezing depth, 

and soil temperature in 10 layers. The soil C/N transfer module simulates the movement of C and N from plants to 

two litter pools and three soil pools through litterfall, litter decomposition, and soil organic matter mineralization. 

Carbon fluxes from the litter and soil carbon pools are based on residence time and pool size of each C pool (Luo 

and Reynolds, 1999).  210 

        The CH4 module simulates the transient, vertical dynamics of CH4 production, oxidation, and belowground 

transport (via ebullition, plant-mediated transport, and diffusion), and CH4 emissions at the soil surface-atmosphere 

interface (Fig. 1). The soil column is divided into 10 layers with each of the first five layers being 10 cm thick 

whereas each of the rest layers being 20 cm thick. Within each soil layer, CH4 concentration dynamics are calculated 

by a transient reaction equation with CH4 production, CH4 oxidation, released bubbles, plant-mediated transport, and 215 

the diffusion of CH4 into/out of this soil layer from the lower/upper soil layer or the atmosphere for the first layer. 

Similar to CLM4Me (Riley et al., 2011), LPJ‐WHyMe (Spahni et al., 2011; Wania et al., 2010), and TRIPLEX‐

GHG (Zhu et al., 2014) models, we assume that CH4 production (Pro) within the catotelm is directly related to 

heterotrophic respiration from soil and litter (Rh, g C m−2 h-1) via the following equation:  

𝑃𝑟𝑜(𝑧, 𝑡) = Rh(𝑧, 𝑡) 𝑓𝐶𝐻4
𝑓𝑠𝑡𝑝(𝑧, 𝑡)𝑓𝑝𝐻𝑓𝑟𝑒𝑑,                                                                                                          (1)                 220 

where fCH4
 is an ecosystem‐specific conversion scaler describing the fraction of anaerobically mineralized C atoms 

becoming CH4. The parameters fstp, fpH, and fred are environmental scalers, representing the effects of soil 

temperature, pH and redox potential, respectively on CH4 production. Total emission of CH4 from the soil to the 

atmosphere is calculated as the sum of CH4 ebullition from saturated soil layers, plant-mediated CH4 emissions from 

all the soil layers, and the diffused flux from the first soil layer into the atmosphere. More detailed descriptions on 225 

the CH4 module can be found in Ma et al. (2017). 
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Figure 1. Conceptual structure of the CH4 emission module in TECO_SPRUCE  

 230 

        The original method used in TECO_SPRUCE for the ebullition process was the constant concentration 

threshold method (Walter and Heimann 2000, Ma et al. 2017). However, a number of factors such as atmospheric 

pressure, water table level, and temperature have been shown to affect   ebullition (Beckmann et al., 2004; Kellner et 

al., 2006; Tokida et al., 2007a). Here, we used two new methods, i.e., the modified Concentration Threshold method 

(ECT) and the Bubble Growth volume threshold method (EBG), to describe CH4 ebullition. In both methods, direct 235 

ebullition into the atmosphere can take place only when the water table level is at or above the soil surface; 

otherwise, CH4 in bubbles is added to the soil layer just above the water table and then continues to diffuse through 

the soil layers to the atmosphere. Below we describe these two methods in detail.  

2.2.2 Ebullition approach based on the Concentration Threshold (TECO_SPRUCE_ECT) 

With the concentration threshold approach, we assume that bubbles form when the CH4 concentration exceeds a 240 

certain threshold based on the equilibrium concentration defined by Henry’s Law. Instead of using a constant value 

for the threshold, in this study, we allowed the threshold to fluctuate with atmospheric pressure, water column 

pressure, and soil temperature, following the method proposed by Wania et al. (2010). The maximum solubility of 

CH4 at a given temperature was calculated using a statistical model used by Yamamoto et al. (1976) based on the 

empirical data: 245 

V = 0.05708 − 0.001545T + 0.00002069T2,                                                                                                 (2)                    

where V is the Bunsen solubility coefficient, defined as the volume of gas dissolved per volume of water at 

atmospheric pressure and a given temperature. The volume of CH4 dissolved per volume of water was converted 

into grams using the ideal gas law: 

[CH4]thre = PV ∗ C/RT,                                                                                                                                   (3) 250 
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where [CH4]thre is the maximum concentration threshold (g C m-3), P is the sum of the atmospheric and hydrostatic 

pressures (Pa), V is the Bunsen solubility coefficient as in Eq. (2), the constant C is the atomic weight of carbon (12 

g mol-1), the gas constant R is 8.3145 m3 Pa K-1 mol-1, and T is the temperature (K). Then the CH4 ebullition flux can 

be calculated using the following equation:  

Ebu(z, t) = {
Kebu([CH4](z, t) − [CH4]thre)          if [CH4] > [CH4]thre

  0.0                                                             if [CH4] ≤ [CH4]thre  
,                                    (4) 255 

where Ebu(z, t) is the ebullition flux of CH4 (g C h-1) to the lowest air layer, Kebu is a rate constant of 1.0 h-1 (Walter 

and Heimann 2000, Zhuang et al. 2004, Zhuang et al. 2006), and [CH4](z, t) is the pore water CH4 concentration in 

soil depth z at model time step t. 

2.2.3. Ebullition approach based on the Bubble Growth volume threshold (TECO_SPRUCE _EBG) 

In contrast to the concentration threshold approach, the EBG approach uses bubble volume as a threshold to trigger 260 

ebullition events (Fechner-Levy and Hemond 1996) and it has been applied to model CH4 ebullition (Kellner et al., 

2006; Zhang et al., 2012; Peltola et al., 2018). The total bubble volume in each soil layer is calculated and updated 

continuously based on the ideal gas law and Henry’s law. In detail, if CH4 concentration exceeds the limit that the 

water can withhold based on Henry’s law, then excess CH4 is converted to a gaseous volume calculated using the 

predefined bubble CH4 mixing ratio (f). This gaseous volume is divided evenly into a certain number of bubbles 265 

(Nbub). Nbub is a unitless tuning parameter ranging between 5–500 in each 10 cm thick soil layer and 10–1000 in each 

20 cm thick soil layer, which essentially controls the mass exchange rate between the gas volume and the pore 

water. The CH4 exchange between the stationary bubbles and the pore water (Qebu) is calculated using the equation 

proposed by Epstein and Plesset (1950): 

Qebu =
4πrDwNbub

Vw
(cw −

HccfP

RT
),                                                                                                        (5) 270 

where r is the radius of a bubble (m), Dw is the CH4 diffusion coefficient in water (m2 s-1) calculated using the 

quadratic curve of observed diffusivities against temperatures (Broecker and Peng, 1974), Vw is the amount of water 

in this layer (m3), cw is dissolved CH4 concentration in the pore water, and Hcc is the dimensionless Henry solubility 

of CH4 calculated following Sander (1999). P, R, and T are same as in Eq. (3). A negative value of Qebu indicates 

CH4 transfer from the bubbles back to the pore water. This reverse gas exchange mechanism has not been included 275 

in other ebullition methods but has been revealed as an important process in empirical studies (McGinnis et al., 

2006; Rosenberry et al., 2006). The ebullition flux Ebu(z,t) is then calculated when the bubble volume at a certain 

depth (z) exceeds the volume threshold (Vmax) within the time step t: 

Vmax = Vmaxfraction ∗ Vw ,                                                                                                                                   (6) 

Ebu(z, t) = {
cb ∗ (VB + ΔVB − Vmax),          if V + ΔV > Vmax  

  0.0                                                             if  V + ΔV < Vmax  
 ,                                              (7) 280 

where Vmaxfraction is the free-phase gas-filled fraction of the pore space in the soil layer above which ebullition occurs, 

cb is the CH4 concentration in a bubble (mol m-3), VB is the total volume of all bubbles, and ΔVB is the change in the 

total volume due to the diffusive gas exchange in Eq. (5). The amount of CH4 in all bubbles after each time step is: 

nb =
fPVB

′

RT
,                                                                                                                                                   (8)          
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where f is the predefined bubble CH4 mixing ratio as mentioned earlier, and VB
′  is the updated total bubble volume 285 

after each time step. Excess bubbles will be released into the lowest air layer within one time step unless they are 

trapped in the soil profile. To determine if a bubble will be trapped, we adopted an approach similar to Peltola et al. 

(2018), assuming that the probability for a bubble to be trapped within a certain soil layer is a predefined constant 

number (bubprob), thus the bubbles formed in deeper layers would have a larger probability of being trapped during 

ascent. In contrast, all other ebullition modeling methods assume that no bubbles will get trapped.  290 

        The values of bubprob, f, and Vmaxfraction are dependent on the soil texture, porosity, water content, etc. and have 

been found to significantly affect the modeled CH4 fluxes, the layers where bubbles were formed, and the number of 

ebullition events (Zhang et al., 2012; Peltola et al., 2018). The tuning parameter, Nbub, however, has a minimal effect 

on modeled ebullition (Peltola et al., 2018). In this study, we used the empirical values measured from other sites or 

the values used in other models as the prior ranges of bubprob, f, and Vmaxfraction in our models (Table 2). Then we 295 

constrained these parameter values via data-model techniques so that the model estimation of ebullition process was 

more accurate. 

 

Table 2. Parameters used for data-model fusion 

Process   Symbol Range Units Definition References  

CH4 

production 

fCH4 [0.0, 0.7] - Fraction of anaerobically 

mineralized C atoms becoming CH4 

Zhuang et al., 2004; Segers, 

1998; Zhu et al., 2014 

  Q10pro [0.0, 10] - Q10 for CH4 production Walter and Heimann, 2000 

CH4 oxidation Omax [3.0, 45.0] μmol L-1 

h-1 

Maximum oxidation rate Zhuang et al., 2004 

CH4 ebullition  f [0.01, 0.5] mol mol-1 CH4 mixing ratio in bubbles  Tang et al., 2010; Peltola et 

al., 2018 

  bubprob [0.01, 0.5] - Probability that a bubble will get 

trapped at one layer 

Tang et al., 2010; Peltola et 

al., 2018 

  Vmaxfraction [0.01, 0.2] - Maximum fraction of volume 

occupied by bubbles 

Peltola et al., 2018  

Plant-mediated 

transportation 

Tveg [0.01, 15.0] - Capability of conducting CH4 gas at 

plant community level 

Walter and Heimann, 2000; 

Zhuang et al., 2004 

 300 

2.3 Data-model fusion 

We used the Markov Chain Monte Carlo (MCMC) method based on the Metropolis-Hasting algorithm (Metropolis 

et al. 1953) to optimize the posterior distribution of parameters and explore model uncertainty. The prior range for 

each parameter was assumed to be uniformly distributed, which indicates that all values within the range have equal 

likelihood. We also assumed that errors between observations and model simulations independently follow a normal 305 
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distribution with a zero mean. The cost function weights the mismatch between observations and the modeled 

corresponding variables, represented by: 

p(Z|θ) ∝ exp {− ∑ ∑
[Zi(t)−X(t)]2

2σi
2(t)t∈Zi

2
i=1 } ,                                                                              (9)           

where  Zi(t) is the ith observation stream at time t, X(t) is the model simulated value, and σi(t) is the standard 

deviation of observation error estimates. 310 

        The parameter space was explored for 50,000 iterations during the optimization process. The new parameter 

value at the current step was based on the accepted parameter in the previous step by a proposed distribution. The 

current value was accepted if the observation-model difference was reduced or otherwise passed with a random 

probability. We ran five chains of 50,000 simulations and used the Gelman-Rubin statistic (Gelman and Rubin, 

1992) to check the convergence of sampling chains. The first half of the accepted parameters were discarded as the 315 

burn-in period, and the second half were used for posterior analysis. More details on sampling and the cost function 

can be found in Xu et al. (2006). 

        Parameters directly regulating CH4 emission pathway and belowground dynamics and their prior ranges used 

for data assimilation are listed in Table 2. Specifically, we selected four parameters (i.e., fCH4, Q10pro, Omax and Tveg) 

from the TECO_SPRUCE_ECT and seven parameters (all the seven parameters in Table 2) from the 320 

TECO_SPRUCE_EBG during data assimilation. The prior ranges were determined by combining information from 

empirical measurements or modeling studies from peatland ecosystems. The in situ CH4 emission and pore water 

CH4 concentration data from ambient plots (Table 1) were used as observations to constrain model parameters. In 

order to evaluate how a proper model structure and constrained parameter values help improve model-simulated 

CH4 emission pathways, we conducted four data assimilation runs with the TECO_SRUCE model, as shown in 325 

Table 3. 

 

Table 3. Details for data assimilation runs. 

Data assimilation 

runs  

Ebullition approaches embedded 

with TECO 

Observation data streams used for constraining the 

parameters 

ECT_F ECT CH4 fluxes 

ECT_FC ECT CH4 fluxes + pore water CH4 concentration profiles 

EBG_F EBG CH4 fluxes 

EBG_FC EBG CH4 fluxes + pore water CH4 concentration profiles 

 

        We illustrate the improvement from model structure by comparing ECT_F and EBG_F, which were calibrated 330 

using the observed CH4 flux data. Then we compare results from EBG_F and EBG_FC to show the ability of pore 

water CH4 concentration data to help constrain the parameters related to the CH4 emission pathways. Model 

performance was evaluated against the observed data using Root Mean Square Error (RMSE). Model uncertainties 

in pore water CH4 concentrations were quantified as the standard deviation across all soil layers in each of model 

runs listed in Table 3. 335 
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3 Results 

3.1 Parameter optimization using CH4 flux data with different model structures  

The CH4 production-related parameters, fCH4
 (fraction of anaerobically mineralized C atoms becoming CH4) and 

Q10pro (temperature sensitivity of CH4 production), were well-constrained using the CH4 emission flux data for both 

TECO_SPRUCE_ECT and TECO_SPRUCE_EBG (Table 4, Fig. 2a, b). However, the maximum likelihood 340 

estimates (MLEs) for parameters varied between the two models (Table 4), with fCH4
 slightly increased from 0.16 to 

0.17 and Q10pro decreased from 3.0 to 2.69 in the EBG approach compared to the ECT approach. In contrast, Omax 

and Tveg were not well-constrained in either model with large uncertainties in model-estimated CH4 oxidation and 

plant transport parameters (Table 4, Fig. 2c, d).  

 345 

Table 4. Parameter values for the posterior distribution of parameters.  

Parameter Ebullition method Observation data 
Posterior distribution 

Mean ± sd 
MLE* Parameter class 

fCH4 ECT Flux 0.16 ± 0.016 0.16 well-constrained 

 EBG Flux 0.17 ± 0.023 0.17 well-constrained 

 EBG Flux + Concentration 0.15 ± 0.021 0.15 well-constrained 

Q10pro ECT Flux 3.0 ± 0.85 3.0 well-constrained 

 EBG Flux 2.69 ± 0.82 2.69 well-constrained 

 EBG Flux + Concentration 3.21 ± 1.07 3.21 well-constrained 

Omax ECT Flux 22.8 ± 12.1 - poorly-constrained 

 EBG Flux 22.5 ± 12.1 - poorly-constrained 

 EBG Flux + Concentration 22.4 ± 12.0 - poorly-constrained 

Tveg ECT Flux 7.7 ± 4.0 - poorly-constrained 

 EBG Flux 5.8 ± 4.0 - poorly-constrained 

 EBG Flux + Concentration 1.43 ± 0.46 1.43 well-constrained 

f EBG Flux 0.11 ± 4.0 0.11 edge-hitting 

 EBG Flux + Concentration 0.29 ± 0.46 0.29 well-constrained 

bubprob EBG Flux 0.22 ± 0.87 - poorly-constrained 

 EBG Flux + Concentration 0.25 ± 0.015 0.23 well-constrained 

Vmaxfraction EBG Flux 0.1 ± 0.13 0.08 well-constrained 

 EBG Flux + Concentration 0.11 ± 0.12 0.1 well-constrained 

*MLE: Maximum Likelihood Estimation. 

        Of the three ebullition-related parameters used only in the EBG approach, when assimilating only the CH4 

emission flux data, Vmaxfraction (maximum fraction of volume occupied by bubbles) was well-constrained with a 

unimodal shaped posterior distribution (Fig. 2g), f (CH4 mixing ratio in bubbles) was edge hitting with a marginal 350 

distribution downward (Fig. 2e), and bubprob (probability that a bubble will get trapped at a certain soil layer) was 

poorly-constrained with a wide, slightly domed distribution (Fig. 2f).  
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Figure 2. Posterior distribution of parameters that govern methane emission processes from data-model fusion. 

Parameters are defined in Table 2. (a) and (b) are parameters related to methane production, (c) is a parameter 355 

related to methane oxidation, (d) is a parameter related to plant transport, and (e)–(g) are parameters related to 

ebullition. X axes indicate the prior ranges of parameters used for data-model fusion. The blue shaded areas are the 

parameter posterior distributions (PPDs) from the ECT model structure trained with CH4 emission data (ECT_F). 

The green shaded areas are the PPDs from the EBG model structure trained with CH4 emission data (EBG_F). The 

purple shaded areas are the PPDs from EBG trained with both CH4 emission and CH4 concentration data (EBG_FC). 360 

Well-constrained parameters have a unimodal distribution whereas poorly constrained parameter distributions tend 

to be flat. 

 

3.2 Evaluations of model structures against the observed data 

Using CH4 emission data to constrain the parameters, EBG-simulated CH4 emissions (RMSE = 0.53, Fig. 3c) had a 365 

better agreement with observations than ECT (RMSE = 0.61, Fig. 3a). In addition, EBG simulated a smaller 

seasonal variability in CH4 emissions (Fig. 3c) than ECT (Fig. 3a). The simulated contributions from plant-mediated 

transport, diffusion, and ebullition were 40.7 ± 8.0 %, 35.7 ± 8.7 %, and 23.5 ± 9.4 %, respectively in ECT_F (Fig. 

3b) and 38.4 ± 13.9 %, 38.7 ± 9.9 %, and 22.7 ± 9.4 %, respectively in EBG_F (Fig. 3d). Compared to ECT (Fig. 

3b), EBG simulated a smaller contribution from ebullition, but more frequent ebullition events (Fig. 3d). 370 
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Figure 3. Observed versus modeled methane emissions (a, c, e) and simulated relative contributions (%) of plant-

mediated transportation (PMT), diffusion, and ebullition under ambient conditions (b, d, f). Black dots are observed 

CH4 emissions from static chamber measurements. Error bars are the standard errors. Blue lines are ECT model 

simulated CH4 emissions based on the parameter probability distributions (PPDs) constrained by CH4 flux data 375 

(ECT_F, RMSE = 0.61). Green lines are EBG model simulated CH4 emissions based on the PPDs constrained by 

CH4 flux data (EBG_F, RMSE = 0.53). Purple lines are EBG model simulated emissions based on the PPDs 

constrained by both CH4 flux and concentration data (EBG_FC, RMSE = 0.52). The midlines and shaded areas 

correspond to the means and standard deviations, respectively from 500 model simulations with parameters 

randomly drawn from the posterior distributions. Relative contributions (%) are the daily mean values calculated 380 

from the simulations. 

         

        The ECT model constrained by CH4 flux data could not reproduce well the patterns of the observed pore water 

CH4 concentrations, especially in the deep peat layers (RMSE = 0.77, Fig. 4, ECT_F). When calibrated by CH4 flux 

data alone, the EBG approach for ebullition captured deep layer CH4 concentrations much better than the ECT 385 

approach (RMSE = 0.33, Fig. 4, EBG_F). The observed concentration profiles lay within the 95 % probability 
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intervals and the means were comparable to observed patterns. However, the EBG model structure simulated a 

relatively large range of CH4 concentration profiles, especially in the deep peat layers, mainly due to the 

unconstrained Tveg and bubprob controlling the plant transport and ebullition pathways, respectively (Fig. 2, 

EBG_F).  390 

 

 

Figure 4. Observed versus simulated pore water CH4 concentration profiles. Black dots are observed concentrations 

measured from piezometer samples. Blue lines are the ECT model simulated concentrations based on the parameter 

probability distributions (PPDs) constrained by CH4 flux data (ECT_F). Green lines are the EBG model simulated 395 

concentrations based on the PPDs constrained by CH4 flux data (EBG_F). Purple lines are the EBG model simulated 

concentrations based on the PPDs constrained by both CH4 flux and concentration data (EBG_FC). All midlines and 

shaded areas correspond to the means and standard deviations, respectively from 500 model simulations with 

parameters randomly drawn from the posterior distributions. 

 400 

3.3 Comparison of the flux- and pool-based data in constraining the parameters for simulating CH4 processes 
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For the ECT approach, as described earlier, assimilating the observed CH4 flux could constrain parameters such as 

fCH4
and Q10pro. However, when using both observed CH4 flux and concentration data to constrain the parameters of 

TECO_SPRUCE_ECT (i.e., the ECT_FC run), no parameter set was accepted within the observational uncertainty 

range, indicating that the ECT model structure failed to simultaneously simulate the dynamics of CH4 emissions and 405 

pore water CH4 concentrations.  

        In contrast to the ECT approach, incorporation of porewater CH4 concentration data in the EBG approach 

greatly improved parameter estimations. While Tveg and bubprob were not constrained by flux-based observation 

data alone (Table 4, Fig. 2, EBG_F), they were well constrained to a unimodal distribution when both CH4 flux and 

pore water CH4 concentration data streams were used in the data-model fusion (Table 4, Fig. 2, EBG_FC). 410 

Compared to EBG_F, the parameter Tveg was well constrained to a very small range of 1.43 ± 0.46, and the 

parameter bubprob was also well constrained to a range of 0.25 ± 0.015 with less uncertainty under EBG_FC (Table 

4, Fig. 2). The parameter fCH4
 decreased from 0.17 in EBG_F to 0.15 in EBG_FC whereas Q10pro increased from 

2.69 in EBG_F to 3.21 in EBG_FC (Table 4, Fig. 2). Moreover, the formerly constrained range of parameter f under 

EBG_F shifted from 0.11 ± 4.0 to 0.29 ± 0.46 when the pore water CH4 concentration information was added into 415 

data assimilation. All the emission pathway-related parameters (Tveg, bubprob, f, and Vmaxfraction) were well 

constrained once the pore water CH4 concentration profile information was added to data-model fusion. However, 

incorporation of the porewater CH4 concentration data in data assimilation with the TECO_SPRUCE_EBG did not 

improve the constraint of Omax.  

        In terms of model’s performance fitting observed CH4 emission patterns, the two parameterization methods for 420 

the EBG approach were comparable, with RMSE of 0.53 under EBG_F and RMSE of 0.52 under EBG_FC (Fig. 3c, 

e). However, the simulated contributions from plant-mediated transport, diffusion, and ebullition by EBG_FC, 

which were 31.8 ± 4.9 %, 58.1 ± 5.1 %, and 9.9 ± 6.1 %, respectively (Fig. 3f), varied greatly from those simulated 

by EBG_F (Fig. 3d). The contribution from ebullition under EBG_FC was much less than that under EBG_F (Fig. 

3d). CH4 flux and concentration data together reduced the uncertainty of the modeled CH4 concentration profiles by 425 

78–86 % compared to the flux data alone for data-model fusion, with RMSE reducing from 0.33 in EBG_F to 0.12 

in EBG_FC (Fig. 4). The uncertainty in modeled CH4 concentration profiles was decreased mainly due to the well-

constrained parameters regulating the CH4 production and emission pathways (Fig. 2a, b, d–g). 

4 Discussion  

In this study, we evaluated two alternative model structures with two data streams, i.e., CH4 emission and pore water 430 

CH4 concentration data, in simulating peatland CH4 emission and its pathways.    

4.1 Better representing CH4 emission and pore water CH4 concentrations by the Ebullition Bubble Growth 

(EBG) model  

Previous studies suggested that the EBG method of modeling ebullition agreed better with the observed temporal 

variability in CH4 emissions (R2 = 0.63) when compared with the ECT (R2 = 0.56) and EPT (R2 = 0.35) methods 435 
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(Peltola et al. 2018). We also found that the EBG-simulated CH4 emissions (RMSE = 0.53) had a better agreement 

with observations than the ECT method (RMSE = 0.61). Ebullition events simulated by EBG had a higher frequency 

but a smaller magnitude than those obtained from ECT, which is consistent with onsite minirhizotron observations 

of small bubbles around fine roots (Fig. S1). Although the ECT method was able to simulate a similar seasonal 

pattern of CH4 emissions as EBG, the mean annual CH4 emission was 17.8 % lower compared with the EBG 440 

method. Peltola et al. (2018) reported that the different ebullition modeling approaches simulated significantly 

different amount of CH4 stored belowground and distinctly different distributions of CH4 along the soil profiles. In 

line with their results, we found that the ECT method produced much higher pore water CH4 concentrations than the 

EBG method, especially in the deep layers (Fig. 4).  

        Of the few modeling studies that compared results with observed belowground CH4 concentration, Walter et al. 445 

(2000) simulated CH4 concentration with an early-generation ECT method. This method used a constant 

concentration threshold that was tuned to match the observed concentration data, but they also found discrepancies 

with observed data (only CH4 concentrations within the first 50 cm soil were compared). Tang et al. (2010) 

compared the EPT method with the early-generation ECT method and found that EPT had an improved CH4 

concentration profile, although a mismatch in the concentration profile remained, especially from the model that best 450 

reproduced observed CH4 emissions. The recently developed Earth system model with a new microbial-functional 

group-based CH4 module incorporated, i.e., the ELM_SRUCE model, used the modified ECT method for ebullition 

process, but incorporated the acetoclastic and hydrogenotrophic pathways for methanogenesis as well as anaerobic 

and aerobic oxidations (Ricciuto et al., 2021). This model could accurately predict the seasonal cycle of CH4 

production and net fluxes, but CH4 concentrations in soil layers deeper than 1m was still not well simulated 455 

(Ricciuto et al., 2021) and led to different estimates of emission pathways (23.5 % for PMT, 15.0 % for diffusion, 

and 61.5 % for ebullition) with our study (31.8 ± 4.9 % for PMT, 58.1 ± 5.1 % for diffusion, and 9.9 ± 6.1 % for 

ebullition). In our study, when training the modified ECT model with both CH4 emission and pore water 

concentration data, no parameter set was accepted, which suggested that the ECT method was not able to 

simultaneously reproduce both the magnitude of observed CH4 fluxes and the patterns of pore water CH4 460 

concentrations, no matter the combinations of parameters used. In contrast, the EBG method could capture observed 

CH4 emissions and the patterns of pore water CH4 concentration profiles simultaneously (Figs. 3 and 4).  

        Moreover, we found that although both the ECT and EBG methods were able to represent the general patterns 

of observed CH4 emissions, the flux-constrained parameter distributions varied between the two methods. For 

example, fCH4
 increased but Q10pro decreased in EBG compared to ECT (Table 4, Fig. 2), which might be attributed 465 

to the confounding effects of missing/inappropriate model structures on parameter estimation because different 

combinations of model parameter values or structures can give similar model outputs (Williams et al., 2009). More 

studies are needed to further explore model structures and parameter optimization methods to best simulate CH4 

production and emission processes and the underlying mechanisms.   

4.2 Pool-based CH4 concentration data reduced the uncertainty of the emission pathways  470 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.



19 
 

Our study suggests that even using a more reasonable model structure, i.e., EBG, parameter sets that resulted in 

good simulations of CH4 emissions did not necessarily reproduce a realistic pore water concentration profile (Figs. 3 

and 4). By comparing the parameter posterior distributions trained by observed CH4 emissions with and without 

observed pore water concentration profiles using the same model structure, TECO_SPRUCE_EBG, we revealed that 

CH4 emission data could constrain the CH4 production-related parameters fCH4 and Q10pro and ebullition-related 475 

parameter Vmaxfraction very well. The ebullition-related parameter f was edge hitting, but parameter bubprob and plant 

transport-related parameter Tveg remained unconstrained, causing large uncertainty in simulated ebullition and plant-

mediated transport (Table 4). However, by training the model with both CH4 emission and pore water CH4 

concentration data, the parameters regulating CH4 production, plant transport, and ebullition were all well 

constrained (Fig. 2). This is because the vertical concentration profile of CH4 is a balance between the dynamic CH4 480 

production, oxidation and three emission pathways. The constrained parameters contributed to a more accurate 

estimation of porewater CH4 concentration (RMSE = 0.12) and better constrained emission pathways (Table 4, Fig. 

4).  

        Previous studies have emphasized the importance of combining carbon-pool data with carbon-flux data to 

improve estimated ecosystem carbon exchange. For example, Richardson et al. (2010) reported the initial leaf pool 485 

size could not be constrained until biomass information was combined with flux data. Du et al. (2015) also found 

that carbon flux data could constrain parameters reflecting instant responses to environmental changes such as 

temperature sensitivity, while pool-based data mainly contained information that could help constrain transfer 

coefficients. GPP/ER data could effectively constrain parameters that were directly related to flux data, such as the 

temperature sensitivity of heterotrophic respiration, the carbon allocation to leaves, and leaf turnover rate (Fox et al., 490 

2009). In our study, the CH4 emission data mainly constrained parameters that represented instant responses to 

temperature change (Q10pro) and input rate from the source pool (fCH4
). The pore water CH4 concentration data 

contributed to constraining the allocation rates of CH4 to the different emission pathways. Due to the different 

information contained between CH4 flux and concentration data, we highly recommend that both types of 

measurements should be made when possible, and that both data streams should be used when constraining CH4 495 

models.  

        It needs to be noted that there is a large disagreement in simulated relative contribution by ebullition between 

CH4 flux data constrained models (i.e., 0.13 % by the ECT approach with a constant concentration threshold (Ma et 

al., 2017), 23.5 % by the modified ECT approach with varied concentration thresholds in our study, and 22.7 % by 

the EBG approach in our study, and the EBG approach constrained with both CH4 flux and concentration data 500 

(9.9 %) (Figure 3). This suggests the urgent need of observed data for separating these relative contributions in field 

experiments, possibly through: 1) having continuous total emission flux measurement (Susiluoto et al., 2018), 

despite being hard to deploy and calibrate in the field; 2) separately measuring diffusive/plant-mediated-

transport/ebullition fluxes, despite being technically challenging; and 3) measuring belowground CH4 concentration 

profile as suggested in our study. At the SPRUCE experiment site, starting in the summer of 2022, two auto-505 

chambers with footprint of 0.2m2 will be deployed in each plot to measure CO2 and CH4 fluxes. Along with the 
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continued CH4 profile measurement, these whole set of observations will provide the opportunity to further evaluate 

these discussed approaches for improving model simulations. 

4.3 Broader impacts and implications 

Large uncertainties exist in understanding future wetland CH4 emissions in response to projected climate change, 510 

which result from inappropriate model structure and insufficient parameterizations even after the uncertainties in 

wetland areas are considered (Melton et al., 2013; Luo and Schuur, 2020). Decades of modeling research on CH4 

has evolved to a stage that the emission pathways are explicitly calculated with various complexities, but 

determining the accuracy and uncertainty of individual pathways still requires more research (Xu et al., 2016). 

Currently, models fail to reproduce diffusive fluxes by more than 40 %, mainly due to the lack of validations by the 515 

pore water CH4 concentrations (Tang et al., 2010; Riley et al., 2011). In LSMs, plant transport exclusively dominates 

CH4 emission in all wetland types tested (Tang et al., 2010; Wania et al., 2010; Peltola et al., 2018). However, 

according to the experimental studies, each of the three emission pathways can dominate, depending on the wetland 

type, vascular plant coverage, and the height of the water table (Whiting and Chanton, 1992, Shannon et al. 1996). 

By assimilating empirical data of both CH4 flux and pore water CH4 concentration data, our data-model fusion study 520 

proposes a more reasonable model structure and more robust parameter estimates with greatly reduced uncertainties. 

        Our results also implicate barriers of current CH4 modeling studies and suggest future directions for both 

modeling and experimental efforts, namely: 1) the under-described CH4 processes in models and 2) the lack of 

observational data to constrain key CH4 processes in the models. More explicit CH4 processes are needed in 

modeling CH4 emission and its pathways. For example, in this study, the maximum aerobic oxidation rate (Omax) 525 

was always poorly constrained with wide, slightly domed distributions (Fig. 2c) regardless of what observation data 

was being assimilated into the models. This poor constraint might partly result from the missing anaerobic oxidation 

process in the models. In current process-based models, much of the descriptions of CH4 dynamics in wetland soils 

are based on the premise that the oxidation of CH4 occurs only in aerobic environments (Wania et al., 2010; Riley et 

al., 2011; Bridgham et al., 2013). However, the anaerobic oxidation of CH4 may be an important sink for CH4, 530 

sometimes reducing emissions by over 50 % in experimental studies (Smemo and Yavitt, 2011; Gupta et al., 2013; 

Segarra et al., 2015). Recently, a microbial-functional-group-based CH4 model was developed accounting for both 

aerobic and anaerobic CH4 oxidations and this model has been validated against the concentration of CH4 and CO2 

from incubation data (Xu et al., 2015). In Xu at el. model, 7 out of total 33 key CH4 process parameters controls CH4 

oxidation and their values varies widely across different ecosystems and environmental conditions. Incorporation of 535 

anaerobic CH4 oxidation into LSMs may help improve the calculations of CH4 oxidation, if the  uncertainties from 

these CH4-oxidation-related parameters can be reduced.  

        While more comprehensive and process-based models for simulating all the processes or mechanisms involved 

in CH4 emissions are laudable, observations on such specific processes are critical to constrain parameters and 

reduce model uncertainty. Without sufficient data to evaluate such processes or to calibrate models, developing such 540 

complex models to explicitly simulate these processes could also introduce large uncertainties. Increased model 

complexity only contributes to the improved forecasting if parameters can be calibrated adequately by observed data 
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(Famiglietti et al., 2021). If there were not enough observational data for model calibrations, increased complexity 

can lead to even worse forecast skills than the intermediate-complexity models (Shi et al., 2018; Famiglietti et al., 

2021). Currently, similar to our model, many process-based biogeochemistry models (e.g., CLM, LPJ, TRPLEX, 545 

JULES, TEM) also use a parameter that varies with soil conditions to describe the potential ratio of CO2 becoming 

CH4 (fCH4), which is due partly to the limitation of data availability. Another example of observational data 

hindering model development is the unconstrained parameters to calculate plant-mediated transport. Although new 

algorithms and parameters to calculate plant aerenchyma transport have been added to LSMs to represent this 

mechanism more realistically, the parameters such as tiller radius, number of tillers, cross section area of tillers, and 550 

the tiller porosity are highly idealized and poorly constrained (Wania et al., 2010; Riley et al., 2011). In the 

TECO_SPRUCE model used in this study, the parameter Tveg was used as a proxy of the ability of the whole plant 

community (e.g., biomass and abundance) to emit CH4. Root growth was simulated by a phenological process using 

LAI and temperature and in situ fine root profile measurements were used as a proxy for vertical rooting 

distributions (Iversen et al., 2018). Tveg was well constrained by the observed CH4 emission and concentration data 555 

at a range of 1.43 ± 0.46, which indicated that the ability of the plant community to emit CH4 at this site was low 

(compared to its prior knowledge of 0.01-15, Table 2). Empirical measurements of plant-mediated CH4 transport at 

the same study site supported our model results (Scott Bridgham, personal communications). This finding can also 

be explained given that the diversity and abundance of aerenchymous plants at our study site were low, similar to 

many other northern ombrotrophic bogs.  560 

5 Conclusions 

Understanding relative contributions of CH4 emission pathways is critical to mechanistically modeling future CH4 

dynamics. Acknowledging that pore water CH4 concentration is the driving force for each emission pathway, we 

evaluated the ability of two ebullition modeling approaches to reproduce observed CH4 emissions and pore water 

concentration profiles at a large-scale manipulated experimental site in a northern Minnesota, USA peatland. The 565 

Ebullition Bubble Growth volume threshold approach (EBG) fits the observed CH4 emissions and CH4 

concentration profiles much better than the modified Ebullition Concentration Threshold approach (ECT), especially 

for CH4 concentrations in the deeper soil layers. By assimilating the net CH4 emission and belowground CH4 

concentration data into the models, we substantially reduced the uncertainties of modeled CH4 emissions from the 

involving emission pathways. While net CH4 efflux data are often the only data stream for CH4 model validations, 570 

we recommend that more attention be given to in situ measurements of the porewater CH4 concentrations and 

assimilations of the concentration data for model parameterization. Since the relative ratio of the emission pathways 

(ebullition, plant-mediated transport and diffusion) determines how much CH4 is oxidized before leaving the soil, 

due to their different transport rate and vulnerability to oxidation, we also suggest that the EBG approach should be 

incorporated into Land Surface Models (LSMs) so that the projections of both CH4 emission and its transport 575 

processes are more realistic in response to climate change scenarios. Future studies should also include anaerobic 

CH4 oxidation into LSMs and constrain its parameters to better predict wetland CH4 emissions. 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.



22 
 

 

Data availability. All data sets from this study are publicly available at project websites. Relevant measurements 

were obtained from the SPRUCE webpage (http://mnspruce.ornl.gov/), the archival ftp site 580 

(ftp://sprucedata.ornl.gov), or from the USDA Forest Service. 

 

Author contributions. SM and YQL designed the project. SM, JJ, YYH, and XJL carried out modeling study. RMW, 

JPC, CMI, AM, PJH and SB provided experimental data for model evaluations and parameter optimization. SM, 

LFJ and YQL prepared the manuscript. All authors contributed to analyzing and interpreting the modeling results, 585 

and improving the manuscript.  

 

Competing interests. The authors declare that they have no conflict of interest. 

 

Acknowledgements. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of 590 

Technology, under a contract with the National Aeronautics and Space Administration. We thank Dr. Zhenggang 

Du’s help with discussing the data-model fusion techniques.  

 

Financial support. This work was primarily founded by subcontract 4000158404 from Oak Ridge National 

Laboratory to Northern Arizona University. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for 595 

the U.S. Department of Energy under contract DE-AC05-00OR22725. The SPRUCE (Spruce and Peatland 

Responses Under Changing Environments) project is supported by the Biological and Environmental Research 

program in the U.S. Department of Energy’s Office of Science.  

 

References  600 

Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the 

control of photosynthesis under different environmental conditions, in: Progress in Photosynthesis Research: 

Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, 

10–15 August 1986, edited by Biggins, J., Springer Netherlands, Dordrecht, Netherlands, 221–224, 

https://doi.org/10.1007/978-94-017-0519-6_48, 1987. 605 

Barber, T. R., Burke, R. A., and Sackett, W. M.: Diffusive flux of methane from warm wetlands, Global 

Biogeochem. Cy., 2, 411–425, https://doi.org/10.1029/GB002i004p00411, 1988. 

Beckmann, M., Sheppard, S. K., and Lloyd, D.: Mass spectrometric monitoring of gas dynamics in peat monoliths: 

effects of temperature and diurnal cycles on emissions, Atmos. Environ., 38, 6907–6913, 

https://doi:10.1016/j.atmosenv.2004.08.004, 2004. 610 

Blodau, C.: Carbon cycling in peatlands — A review of processes and controls, Environ. Rev., 10, 111–134, 

https://doi.org/10.1139/a02-004, 2002. 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.



23 
 

Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., and Zhuang, Q.: Methane emissions from wetlands: 

biogeochemical, microbial, and modeling perspectives from local to global scales, Glob. Change Biol., 19, 

1325–1346, https://doi.org/10.1111/gcb.12131, 2013. 615 

Broecker, W. S. and Peng. T. H.: Gas exchange rates between air and sea, Tellus, 26, 21–35, 

https://doi.org/10.3402/tellusa.v26i1-2.9733, 1974. 

Chanton, J. P. and Dacey, J. W.: Effects of vegetation on methane flux, reservoirs, and carbon isotopic composition, 

in: Trace Gas Emissions by Plants, edited by Sharkey, T. D., Holland, E. A., and Mooney, H. A., Academic 

Press, San Diego, USA, 65–89, https://doi.org/10.1016/B978-0-12-639010-0.50008-X, 1991. 620 

Christensen, T. R., Panikov, N., Mastepanov, M., Joabsson, A., Stewart, A., Öquist, M., Sommerkorn, M., Reynaud, 

S., and Svensson, B.: Biotic controls on CO2 and CH4 exchange in wetlands–a closed environment 

study, Biogeochemistry, 64, 337–354, https://doi.org/10.1023/A:1024913730848, 2003. 

Conrad, R. and Rothfuss, F.: Methane oxidation in the soil surface layer of a flooded rice field and the effect of 

ammonium, Biol. Fert. Soils, 12, 28–32, https://doi.org/10.1007/BF00369384, 1991. 625 

Denman, K.L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., 

Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy, S. C., and Zhang, X.: 

Couplings between changes in the climate system and biogeochemistry, in: Climate Change 2007: The Physical 

Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change, edited by Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., 630 

Tignor M., and Miller H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, 

USA, https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter7-1.pdf, 2007. 

Du, Z., Nie, Y., He, Y., Yu, G., Wang, H., and Zhou, X.: Complementarity of flux- and biometric-based data to 

constrain parameters in a terrestrial carbon model, Tellus B, 24102, https://doi.org/10.3402/tellusb.v67.24102, 

2015. 635 

Epstein, P. S. and Plesset, M. S.: On the Stability of Gas Bubbles in Liquid‐Gas Solutions. The J. Chem. Phys., 18, 

1505–1509, https://doi.org/10.1063/1.1747520, 1950. 

Famiglietti, C. A., Smallman, T. L., Levine, P. A., Flack-Prain, S., Quetin, G. R., Meyer, V., Parazoo, N. C., Stettz, 

S. G., Yang, Y., Bonal, D., Bloom, A. A., Williams, M., and Konings, A. G.: Optimal model complexity for 

terrestrial carbon cycle prediction, Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, 640 

2021. 

Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in 

leaves of C3 species, Planta, 149, 78–90, https://doi.org/10.1007/BF00386231, 1980. 

Fechner-Levy, E. J. and Hemond, H. F.: Trapped methane volume and potential effects on methane ebullition in a 

northern peatland, Limnol. Oceanogr., 41, 1375–1383, https://doi.org/10.4319/lo.1996.41.7.1375, 1996. 645 

Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife, T., Ricciuto, D., Reichstein, M., 

Tomelleri, E., Trudinger, C. M., and Van Wijk, M. T.: The REFLEX project: Comparing different algorithms 

and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data, Agr. 

Forest Meteorol., 149, 1597–1615, https://doi.org/10.1016/j.agrformet.2009.05.002, 2009. 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.



24 
 

Gelman, A. and Rubin. D. B.: Inference from iterative simulation using multiple sequences. Statist. Sci. 7, 457–472, 650 

https://doi.org/10.1214/ss/1177011136, 1992. 

Glaser, P. H., Chanton, J. P., Morin, P., Rosenberry, D. O., Siegel, D. I., Ruud, O., Chasar, L. I., and Reeve, A. S.: 

Surface deformations as indicators of deep ebullition fluxes in a large northern peatland, Global Biogeochem. 

Cy., 18, GB1003, https://doi.org/10.1029/2003GB002069, 2004. 

Granberg, G., Grip, H., Löfvenius, M. O., Sundh, I., Svensson, B. H., and Nilsson, M.: A simple model for 655 

simulation of water content, soil frost, and soil temperatures in boreal mixed mires, Water Resour. Res., 35, 

3771–3782, https://doi.org/10.1029/1999WR900216, 1999. 

Gupta, V., Smemo, K. A., Yavitt, J. B., Fowle, D., Branfireun, B., and Basiliko, N.: Stable isotopes reveal 

widespread anaerobic methane oxidation across latitude and peatland Ttype, Environ., Sci., Technol., 47, 8273–

8279, https://doi.org/10.1021/es400484t, 2013. 660 

Hanson, P. J., Phillips, J. R. , Riggs, J. S., Nettles, W. R., and Todd, D. E.: SPRUCE large-collar in situ CO2 and 

CH4 flux data for the SPRUCE experimental plots, Carbon Dioxide Information Analysis Center, Oak Ridge 

National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A., 

https://dx.doi.org/10.3334/CDIAC/spruce.006, 2014. 

Hanson, P. J., Riggs, J. S., Dorrance, C., Nettles, W. R., and Hook, L. A: SPRUCE environmental monitoring data: 665 

2010-2016, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of 

Energy, Oak Ridge, Tennessee, U.S.A., http://dx.doi.org/10.3334/CDIAC/spruce.001, 2015a. 

Hanson, P. J., Riggs, J. S., Nettles, W. R., Krassovski, M. B., and Hook, L. A.: SPRUCE Deep Peat Heating (DPH) 

environmental data, February 2014 through July 2105, Oak Ridge National Laboratory, TES SFA, U.S. 

Department of Energy, Oak Ridge, Tennessee, U.S.A., https://doi.org/10.3334/CDIAC/spruce.013, 2015b. 670 

Hanson, P. J., Gill, A. L., Xu, X., Phillips, J. R., Weston, D. J., Kolka, R. K., Riggs, J. S., and Hook, L. A.: 

Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project 

in a global context, Biogeochemistry, 129, 255–272., https://doi.org/10.1007/s10533-016-0230-8, 2016a. 

Hanson, P. J., Riggs, J. S., Nettles, W. R., Krassovski, M. B., and Hook, L. A.: SPRUCE Whole Ecosystems 

Warming (WEW) environmental data beginning August 2015, Oak Ridge National Laboratory, TES SFA, U.S. 675 

Department of Energy, Oak Ridge, Tennessee, U.S.A., http://doi.org/10.3334/CDIAC/spruce.032, 2016b. 

Hanson, P. J., Riggs, J. S., Nettles, W. R., Phillips, J. R., Krassovski, M. B., Hook, L. A., Gu, L., Richardson, A. D., 

Aubrecht, D. M., Ricciuto, D. M., Warren, J. M., and Barbier, C.: Attaining whole-ecosystem warming using air 

and deep-soil heating methods with an elevated CO2 atmosphere, Biogeosciences, 14, 861–883, 

https://doi.org/10.5194/bg-14-861-2017, 2017a. 680 

Hanson, P. J., Phillips, J. R., Riggs, J. S., and Nettles, W.R.: SPRUCE large-collar in situ CO2 and CH4 flux data for 

the SPRUCE experimental plots: Whole-ecosystem-warming, Carbon Dioxide Information Analysis Center, 

Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A., http://dx.doi.org 

/10.3334/CDIAC/ spruce.034, 2017b. 

Hanson, P. J., Phillips, J. R., Wullschelger, S. D., Nettles, W. R., Warren, J. M., Ward, E. J.: SPRUCE tree growth 685 

assessments of Picea and Larix in S1-Bog plots and SPRUCE experimental plots beginning in 2011, Oak Ridge 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.



25 
 

National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A., 

https://doi.org/10.25581/spruce.051/1433836, 2018a. 

Hanson, P. J., Phillips, J. R., Brice, D. J., and Hook, L.A.: SPRUCE shrub-layer growth assessments in S1-Bog plots 

and SPRUCE experimental plots beginning in 2010, Oak Ridge National Laboratory, TES SFA, U.S. 690 

Department of Energy, Oak Ridge, Tennessee, U.S.A., https://doi.org/10.25581/spruce.052/1433837, 2018b. 

Huang, Y., Jiang, J., Ma, S., Ricciuto, D., Hanson, P. , and Luo. Y.: Soil thermal dynamics, snow cover, and frozen 

depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation, J. 

Geophys. Res. Biogeo., 122, 2046–2063, https://doi.org/10.1002/2016JG003725, 2017. 

Iversen, C. M., Hanson, P. J., Brice, D. J., Phillips, J. R., McFarlane, K. J., Hobbie, E..A., and Kolka, R.K.: 695 

SPRUCE Peat Physical and Chemical Characteristics from Experimental Plot Cores, 2012, Oak Ridge National 

Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A., 

https://doi.org/10.3334/CDIAC/spruce.005, 2014. 

Iversen, C. M., Childs, J., Norby, R. J., Ontl, T. A., Kolka, R. K., Brice, D. J., McFarlane, K. J., and Hanson. P. J.: 

Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat, Plant 700 

Soil, 424, 123–143, https://doi.org/10.1007/s11104-017-3231-z, 2018. 

Iwata, H., Hirata, R., Takahashi, Y., Miyabara, Y., Itoh, M., and Iizuka, K.: Partitioning Eddy-Covariance Methane 

Fluxes from a Shallow Lake into Diffusive and Ebullitive Fluxes, Bound-Lay Meteorol., 169, 413–428, 

https://doi.org/10.1007/s10546-018-0383-1, 2018. 

Jiang, J., Huang, Y., Ma, S., Stacy, M., Shi, Z., Ricciuto, D. M., Hanson, P. J., and Luo, Y.: Forecasting responses of 705 

a northern peatland carbon cycle to elevated CO2 and a gradient of experimental warming, J. Geophys. Res. 

Biogeo., 123, 1057–1071, https://doi.org/10.1002/2017JG004040, 2018. 

Keenan, T. F., Davidson, E. A., Munger, J. W., and Richardson, A. D.: Rate my data: quantifying the value of 

ecological data for the development of models of the terrestrial carbon cycle, Ecol. Appl., 23, 273–286, 

https://doi.org/10.1890/12-0747.1, 2013. 710 

Kellner, E., Baird, A. J., Oosterwoud, M., Harrison, K., and Waddington, J. M.: Effect of temperature and 

atmospheric pressure on methane (CH4) ebullition from near-surface peats,  Geophys. Res. Lett., 33, L18405, 

https://doi.org/10.1029/2006GL027509, 2006. 

Klapstein, S. J., Turetsky, M. R., McGuire, A. D., Harden, J. W., Czimczik, C. I., Xu, X., Chanton, J. P., and 

Waddington. J. M.: Controls on methane released through ebullition in peatlands affected by permafrost 715 

degradation, J. Geophys. Res. Biogeo., 119, 418–431, https://doi.org/10.1002/2013JG002441, 2014. 

Laanbroek, H. J.: Methane emission from natural wetlands: interplay between emergent macrophytes and soil 

microbial processes. A mini-review, Ann. Bot., 105, 141–153, 10.1093/aob/mcp201, 2010. 

Liang, J., Xia, J., Shi, Z., Jiang, L., Ma, S., Lu, X., Mauritz, M., Natali, S. M., Pegoraro, E., Penton, C. R., Plaza, C., 

Salmon, V. G., Celis, G., Cole, J. R., Konstantinidis, K. T., Tiedje, J. M., Zhou, J., Schuur, E. A. G., and Luo, 720 

Y.: Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra, Glob. Change Biol., 24, 

4946–4959, https://doi.org/10.1111/gcb.14325, 2018. 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.



26 
 

Luo, Y. and Reynolds, J. F.: Validity of extrapolating field CO2 experiments to predict carbon sequestration in 

natural ecosystems, Ecology, 80, 1568–1583, https://doi.org/10.1890/0012-

9658(1999)080[1568:VOEFCE]2.0.CO;2, 1999. 725 

Luo, Y. Q. and Schuur, E. A. G.: Model parameterization to represent processes at unresolved scales and changing 

properties of evolving systems, Glob. Change Biol., 26, 1109–1117, https://doi.org/10.1111/gcb.14939, 2020. 

Ma, S., Jiang, J., Huang, Y., Shi, Z., Wilson, R. M., Ricciuto, D., Sebestyen, S. D., Hanson, P. J., and Luo, Y.: Data-

constrained projections of methane fluxes in a northern Minnesota peatland in response to elevated CO2 and 

warming, J. Geophys. Res. Biogeo., 122, 2841–2861, https://doi.org/10.1002/2017JG003932, 2017. 730 

Malhotra A, Brice D, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM (2020) 

Peatland warming strongly increases fine-root growth. PNAS.117:30, 17627-1763410 

 

Malhotra A,  DJ Brice, J Childs, HM Vander Stel, SE Bellaire, E Kraeske*, SM Letourneou*, L Owens, LM 

Rasnake*, CM Iversen. 2020. SPRUCE Production and Chemistry of Newly-Grown Fine Roots Assessed Using 735 

Root Ingrowth Cores in SPRUCE Experimental Plots beginning in 2014. Oak Ridge National Laboratory, TES 

SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A (access link) 

McCullough, L.: Examining anaerobic oxidation of methane in a northern peat bog, M.S. thesis, University of 

Oregon, Eugene, Oregon, USA, 53 pp., 2019. 

McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E., and Wüest. A.: Fate of rising methane bubbles in 740 

stratified waters: How much methane reaches the atmosphere? J. Geophys. Res. Oceans, 111, C09007, 

https://doi.org/10.1029/2005JC003183, 2006. 

Megonigal, J. P., Hines, M., and Visscher, P.: Anaerobic metabolism: linkages to trace gases and aerobic processes, 

in: Biogeochemistry, edited by Schlesinger, W. H., Elsevier-Pergamon, Oxford, UK, 317–424, 

https://doi.org/10.1016/B0-08-043751-6/08132-9, 2004. 745 

Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., 

Chen, G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J., Singarayer, J. S., 

Subin, Z. M., Tian, H., Zürcher, S., Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: 

Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-

comparison project (WETCHIMP), Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, 750 

2013. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: Equation of state calculations 

by fast computing machines, J. Chem. Phys., 21, 1087, https://doi.org/10.1063/1.1699114, 1953. 

Neubauer, S. C. and Megonigal, J.P.: Moving beyond global warming potentials to quantify the climatic role of 

ecosystems. Ecosystems, 18, 1000–1013, https://doi.org/10.1007/s10021-015-9879-4, 2015.  755 

Norby, R. J. and Childs, J.: SPRUCE: Sphagnum productivity and community composition in the SPRUCE 

experimental plots, Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, 

Tennessee, U.S.A., https://doi.org/10.25581/spruce.049/1426474, 2018. 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.



27 
 

Parsekian, A. D., Slater, L., Ntarlagiannis, D., Nolan, J., Sebesteyen, S. D., Kolka, R. K., and Hanson, P. J.: 

Uncertainty in peat volume and soil carbon estimated using ground-penetrating radar and probing, Soil Sci. Soc. 760 

Am J., 76, 1911–1918, https://doi.org/10.2136/sssaj2012.0040, 2012. 

Peltola, O., Raivonen, M., Li, X., and Vesala, T.: Technical note: Comparison of methane ebullition modelling 

approaches used in terrestrial wetland models, Biogeosciences, 15, 937–951, https://doi.org/10.5194/bg-15-937-

2018, 2018. 

Ricciuto, D. M., Xu, X. F., Shi, X. Y., Wang, Y. H., Song, X., Schadt, C. W., Griffiths, N. A., Mao, J. F., Warren, J. 765 

M., Thornton, P. E., Chanton, J., Keller, J. K., Bridgham, S. D., Gutknecht, J., Sebestyen, S. D., Finzi, A., 

Kolka, R., and Hanson, P. J.: An integrative model for soil biogeochemistry and methane processes: I. Model 

structure and sensitivity analysis, J. Geophys. Res. Biogeo., 126, e2019JG005468, 

https://doi.org/10.1029/2019JG005468, 2021. 

Richardson, A. D., Williams, M., Hollinger, D. Y., Moore, D. J. P., Dail, D. B., Davidson, E. A., Scott, N. A., 770 

Evans, R. S., Hughes, H., Lee, J. T., Rodrigues, C., and Savage, K.: Estimating parameters of a forest ecosystem 

C model with measurements of stocks and fluxes as joint constraints, Oecologia, 164, 25–40, 

https://doi.org/10.1007/s00442-010-1628-y, 2010. 

Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., and Hess, 

P.: Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane 775 

biogeochemistry model integrated in CESM, Biogeosciences, 8, 1925–1953, https://doi.org/10.5194/bg-8-1925-

2011, 2011. 

Rosenberry, D. O., Glaser, P. H., and Siegel. D. I.: The hydrology of northern peatlands as affected by biogenic gas: 

current developments and research needs, Hydrol. Process., 20, 3601–3610, https://doi.org/10.1002/hyp.6377, 

2006. 780 

Sander, R.: Compilation of Henry's law constants for inorganic and organic species of potential importance in 

environmental chemistry, Citeseer, 

https://www.ft.unicamp.br/~mariaacm/ST405/Lei%2520de%2520Henry.pdf, 1999. 

Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., 

Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, 785 

D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, 

P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M. I., Höglund-Isaksson, L., 

Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel, P. 

B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., 

Miller, P. A., Melton, J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, 790 

S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., 

Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., 

Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der 

Werf, G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.



28 
 

Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.: The global methane budget 2000–2017, Earth Syst. Sci. Data, 12, 795 

1561–1623, https://doi.org/10.5194/essd-12-1561-2020, 2020. 

Schipper, L. A. and Reddy, K. R.: Determination of methane oxidation in the rhizosphere of Sagittaria lancifolia 

using methyl fluoride, Soil Sci. Soc. Am. J., 60, 611–616, 

https://doi.org/10.2136/sssaj1996.03615995006000020039x, 1996. 

Sebestyen, S. D., Dorrance, C., Olson, D. M., Verry, E. S., Kolka, R. K., Elling, A. E., and Kyllander, R.: Long-term 800 

monitoring sites and trends at the Marcell Experimental Forest, CRC Press, New York, USA., 2011. 

Segarra, K. E. A., Schubotz, F., Samarkin, V., Yoshinaga, M. Y., Hinrichs, K. U., and Joye, S. B.: High rates of 

anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions, Nat. 

Commun., 6, 7477, https://doi.org/10.1038/ncomms8477, 2015. 

Segers, R.: Methane production and methane consumption: A review of processes underlying wetland methane 805 

fluxes, Biogeochemistry, 41, 23–51, http://www.jstor.org/stable/1469307, 1998. 

Shannon, R. D., White, J. R., Lawson, J. E., and Gilmour, B. S.: Methane efflux from emergent vegetation in 

peatlands, J. Ecol., 84, 239–246, https://doi.org/10.2307/2261359, 1996. 

Shea, K., Turetsky, M. R., and Waddington, J. M.: Quantifying diffusion, ebullition, and plant-mediated transport of 

CH4 in Alaskan peatlands undergoing permafrost thaw, American Geophysical Union, Washington, DC, 810 

U.S.A., 2010. 

Shi, Z., Crowell, S., Luo, Y. Q., and Moore III. B.: Model structures amplify uncertainty in predicted soil carbon 

responses to climate change, Nat. Commun., 9, 2171, https://doi.org/10.1038/s41467-018-04526-9, 2018. 

Shi, Z., Xu, X., Hararuk, O., Jiang, L., Xia, J., Liang, J., Li D., and Luo, Y.: Experimental warming altered rates of 

carbon processes, allocation, and carbon storage in a tallgrass prairie, Ecosphere, 6, art210, 815 

https://doi.org/10.1890/ES14-00335.1, 2015a. 

Shi, Z., Yang, Y., Zhou, X., Weng, E., Finzi, A. C., and Luo, Y.: Inverse analysis of coupled carbon-nitrogen cycles 

against multiple datasets at ambient and elevated CO2, J. Plant Ecol., 103, 1131–1140, 

https://doi.org/10.1093/jpe/rtv059, 2015b. 

Smemo, K. A. and Yavitt. J. B.: Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in 820 

peatland ecosystems? Biogeosciences, 8, 779–793, https://doi.org/10.5194/bg-8-779-2011, 2011. 

Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P., Frankenberg, C., Foster, P. N., Joos, F., 

Prentice, I. C., and van Velthoven, P.: Constraining global methane emissions and uptake by ecosystems, 

Biogeosciences, 8, 1643–1665, https://doi.org/10.5194/bg-8-1643-2011, 2011. 

Ström, L., Mastepanov, M., and Christensen, T. R.: Species-Specific Effects of vascular plants on carbon turnover 825 

and methane emissions from wetlands, Biogeochemistry, 75, 65–82, http://www.jstor.org/stable/20055258, 

2005. 

Susiluoto, J., Raivonen, M., Backman, L., Laine, M., Makela, J., Peltola, O., Vesala, T., and Aalto, T.: Calibrating 

the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC, 

Geosci. Model Dev., 11, 1199–1228, https://doi.org/10.5194/gmd-11-1199-2018, 2018. 830 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.



29 
 

Tang, J., Zhuang, Q., Shannon, R. D., and White: J. R.: Quantifying wetland methane emissions with process-based 

models of different complexities, Biogeosciences, 7, 3817–3837, https://doi.org/10.5194/bg-7-3817-2010, 2010. 

Teh, Y. A., Silver, W. L., and Conrad. M. E.: Oxygen effects on methane production and oxidation in humid tropical 

forest soils, Glob. Change Biol., 11, 1283–1297, https://doi.org/10.1111/j.1365-2486.2005.00983.x, 2005. 

Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A., and Hatano, R.: Falling 835 

atmospheric pressure as a trigger for methane ebullition from peatland, Global Biogeochem. Cy., 21, GB2003, 

https://doi.org/10.1029/2006GB002790, 2007a. 

Tokida, T., Mizoguchi, M., Miyazaki, T., Kagemoto, A., Nagata, O., and Hatano. R.: Episodic release of methane 

bubbles from peatland during spring thaw, Chemosphere, 70, 165–171, 

https://doi.org/10.1016/j.chemosphere.2007.06.042, 2007b. 840 

Waddington, J. M., Roulet, N. T., and Swanson, R. V.: Water table control of CH4 emission enhancement by 

vascular plants in boreal peatlands, J. Geophys. Res. Atmos., 101, 22775–22785, 

https://doi.org/10.1029/96JD02014, 1996. 

Walter, B. P. and Heimann, M.: A process-based, climate-sensitive model to derive methane emissions from natural 

wetlands: Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. 845 

Cy., 14, 745–765, https://doi.org/10.1029/1999GB001204, 2000. 

Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within adynamic 

global vegetation model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565–584, https://doi.org/10.5194/gmd-3-

565-2010, 2010. 

Weng, E. and Luo, Y.: Soil hydrological properties regulate grassland ecosystem responses to multifactor global 850 

change: A modeling analysis, J. Geophys. Res. Biogeo., 113, G03003, https://doi.org/10.1029/2007JG000539, 

2008. 

Whiting, G. J. and Chanton, J. P.: Plant-dependent CH4 emission in a subarctic Canadian fen, Global Biogeochem. 

Cy., 6, 225–231, https://doi.org/10.1029/92GB00710, 1992. 

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Carvalhais, N., Jung, M., 855 

Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M., and Wang, Y. P.: Improving 

land surface models with FLUXNET data, Biogeosciences, 6, 1341–1359, https://doi.org/10.5194/bg-6-1341-

2009, 2009. 

Wilson, R. M., Hopple, A. M.. Tfaily, M. M.. Sebestyen, S. D.. Schadt, C. W.. Pfeifer-Meister, L.. Medvedeff, C.. 

McFarlane, K. J.. Kostka, J. E.. Kolton, M.. Kolka, R. K.. Kluber, L. A.. Keller, J. K.. Guilderson, T. P.. 860 

Griffiths, N. A., Chanton, J. P.. Bridgham, S. D., and Hanson, P. J.: Stability of peatland carbon to rising 

temperatures, Nat. Commun., 7, 13723, https://doi.org/10.1038/ncomms13723, 2016. 

Xu, T., White, L., Hui, D., and Luo, Y.: Probabilistic inversion of a terrestrial ecosystem model: Analysis of 

uncertainty in parameter estimation and model prediction, Global Biogeochem. Cy., 20, GB2007, 

https://doi.org/10.1029/2005GB002468, 2006. 865 

Xu, X., Elias, D. A., Graham, D. E., Phelps, T. J., Carrol, S. L., Wullschleger, S. D., and Thornton, P. E.: A 

microbial functional group based module for simulating methane production and consumption: Application to 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.



30 
 

an incubation permafrost soil, J. Geophys. Res. Biogeo., 120, 1315–1333, 

https://doi.org/10.1002/2015JG002935, 2015. 

Xu, X., Yuan, F., Hanson, P. J., Wullschleger, S. D., Thornton, P. E., Riley, W. J., Song, X., Graham, D. E., Song, 870 

C., and Tian, H.: Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems, 

Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016, 2016. 

Yamamoto, S., Alcauskas, J. B., and Crozier, T. E.: Solubility of methane in distilled water and seawater, J. Chem. 

Eng. Data, 21, 78–80, https://doi.org/10.1021/je60068a029, 1976. 

Yu, Z., Slater, L. D., Schäfer, K. V. R., Reeve, A. S., and Varner, R. K.: Dynamics of methane ebullition from a peat 875 

monolith revealed from a dynamic flux chamber system, J. Geophys. Res. Biogeo., 119, 1789–1806, 

https://doi.org/10.1002/2014JG002654, 2014. 

Yuan, F. H., Wang, Y. H., Ricciuto, D. M., Shi, X. Y., Yuan, F. M., Hanson, P. J., Bridgham, S., Keller, J., 

Thornton, P. E., and Xu, X. F.: An integrative model for soil biogeochemistry and methane processes. II: 

Warming and elevated CO2 effects on peatland CH4 Emissions, J. Geophys. Res. Biogeo., 126, 880 

e2020JG005963, https://doi.org/10.1029/2020JG005963, 2021. 

Zhang, Y., Sachs, T., Li, C., and Boike, J.: Upscaling methane fluxes from closed chambers to eddy covariance 

based on a permafrost biogeochemistry integrated model, Glob. Change Biol., 18, 1428–1440, 

https://doi.org/10.1111/j.1365-2486.2011.02587.x, 2012. 

Zhu, Q., Liu, J., Peng, C., Chen, H., Fang, X., Jiang, H., Yang, G., Zhu, D., Wang, W., and Zhou, X.: Modelling 885 

methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model, 

Geosci. Model Dev., 7, 981–999, https://doi.org/10.5194/gmd-7-981-2014, 2014. 

Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., Felzer, B. S., and Hu, 

S.: Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past 

century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochem. Cy., 18, 890 

GB3010, https://doi.org/10.1029/2004GB002239, 2004. 

Zhuang, Q., Melillo, J. M., Sarofim, M. C., Kicklighter, D. W., McGuire, A. D., Felzer, B. S., Sokolov, A., Prinn, R. 

G., Steudler, P. A., and Hu, S.: CO2 and CH4 exchanges between land ecosystems and the atmosphere in 

northern high latitudes over the 21st century. Geophys. Res. Lett., 33, L17403, 

https://doi.org/10.1029/2006GL026972, 2006. 895 

 

https://doi.org/10.5194/bg-2021-316
Preprint. Discussion started: 20 December 2021
c© Author(s) 2021. CC BY 4.0 License.


